
Statistical Tools in Python
A NASA AISR Project

Tom Loredo, Alanna Connors, Travis Oliphant

Cornell/Eureka Scientific/BYU

Motivation
Many advanced methods are conceptually simple but
computationally difficult.

Competing methods of very different levels of
sophistication are often similar from end-user’s
perspective.

Principle obstacle to understanding/use is the art of
statistical computing.

Eliminate this obstacle!

Main Features
• A deep and broad tool set

I Tools tailored to astronomer-specific needs:
Poisson processes, truncated power-law distributions,
spherical distributions, upper limits, hierarchical
methods . . .

I Multiple methods in each problem class, esp.
frequentist/Bayes

• Use of a modern VHL computer language: Python
I Single implementation facilitates depth/breadth

I Python’s VHL features speed development

I Python’s simplicity allows easy access

• Outreach

A Bit About Python

• Very simple syntax—resembles “pseudo code”

• Use interactively, or via scripts/modules

• Object oriented—high level interfaces, modularity

• A general purpose language with rich standard library

• Sophisticated and fast numerical capability via
NumPy/Numeric

• Easily extendible/embeddable with C/C++/Fortran

• Open source, cross-platform, active & growing user
community

Scientific Computing With Python

• Numeric package (efficient array numerics)
I Developed by LLNL/MIT scientists & programmers

I Inspired by Matlab/IDL/Fortran90

I Successor in development by NASA/STScI (numarray)

• SciPy package
I High level interfaces to large, popular libraries:

special functions, linear algebra, FFTs, DSP,
quadrature, ODE solvers, optimizers, stats

I Inline C via weave package

• Plotting
I Interfaces to very many popular libraries (but no std.)

I New package in development by NASA/STScI (Chaco)

NASA Support of Python

• PyRAF — Data analysis environment (STScI)

• numarray — Successor to Numeric (STScI)

• Chaco — Cross-platform, publication-quality 2-D
plotting (STScI)

• Statistical Tools (Cornell/Eureka/BYU)

Simple Example: The Rayleigh Statistic

Search for periodic signals in arrival time series, {ti}.

R(ω) =
1

N

(

∑

i

sinωti

)2

+

(

∑

i

cosωti

)2

Frequentist approach: Maximize over ω; Rmax ∼ χ2
2

Bayesian approach: log-sinusoid rate model

r(t) ∝ exp[κ cos(ωt+ φ)]

Likelihood for frequency L(ω) ∝ eκR(ω)

Sample Source Code

Python source code C source code

from Numeric import *

def Rayleigh (data, w):

wd = w*data

return (sum(sin(wd))**2 +

sum(cos(wd))**2)/len(data)

#include <math.h>

double Rayleigh (int n, double *data,

double w) {

double S, C, wt;

int i;

S = 0.;

C = 0.;

for (i=0; i<n; i++) {

wt = w*data[i];

S += sin(wt);

C += cos(wt);

}

return (S*S + C*C)/n;

}

Proposed Components

Methods for data from sampled functions, di = f(ti) + ei

• Basic statistics (build on SciPy)

• Errors-in-variables models (EVM)

• Detection/measurement of periodic signals:
Schuster periodogram, Lomb-Scargle, Bretthorst
algorithm, piecewise-constant modeling

• Nonperiodic time series analysis (QPOs, 1/f noise):
ARMA models, long-memory processes

• Robust estimation/outlier detection

Methods for discrete data:

• Counting processes (confidence/credible regions,
backgrounds)

• Periodic point processes: Rayleigh statistic, Z2

N
,

log-Fourier models, G-L method

• Inhomogeneous point processes: Bayes blocks, Poisson
wavelets

• Population analyses: Survival analysis (ASURV), point
process + noise

• Nonparametric methods: PiCA KDE algorithm, mixture
models

Parametric Inference Engine

• Constrained optimization

• Automated evalution on grids, with refinement

• Projection (optimization on parameter subset)

• Simple parameter transformations

• Hessian calculation

• Multidimensional integration

• Tools for creating & analyzing Markov chains

We are very open to advice/suggestions/requests!

	Motivation
	Main Features
	A Bit About Python
	Scienti{f}ic Computing With Python
	NASA Support of Python
	Simple Example: The Rayleigh Statistic
	Sample Source Code
	Proposed Components
	
	Parametric Inference Engine
	

